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Is the information transmitted by an ensemble of neurons determined solely by the number of spikes ¢red
by each cell, or do correlations in the emission of action potentials also play a signi¢cant role? We derive
a simple formula which enables this question to be answered rigorously for short time-scales. The formula
quanti¢es the corrections to the instantaneous information rate which result from correlations in spike
emission between pairs of neurons. The mutual information that the ensemble of neurons conveys about
external stimuli can thus be broken down into ¢ring rate and correlation components. This analysis
provides fundamental constraints upon the nature of information coding, showing that over short time-
scales correlations cannot dominate information representation, that stimulus-independent correlations
may lead to synergy (where the neurons together convey more information than they would if they were
considered independently), but that only certain combinations of the di¡erent sources of correlation result
in signi¢cant synergy rather than in redundancy or in negligible e¡ects. This analysis leads to a new
quanti¢cation procedure which is directly applicable to simultaneous multiple neuron recordings.
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1. INTRODUCTION

A controversy exists over the extent to which ¢ring rates
and correlations between the responses of di¡erent cells
(such as synchronization of action potentials) contribute
to information representation and processing by neural
ensembles. Encoding of information in the correlation
between the ¢ring of di¡erent neurons has been demon-
strated in specialized sensory systems such as the retina of
the salamander (Meister et al. 1995) and the auditory
localization system of the barn owl (Carr & Konishi
1990; Carr 1993). For the mammalian cortex, the
evidence is less clear. Several investigators (Vaadia et al.
1995; deCharms & Merzenich 1996; Murthy & Fetz 1996;
Riehle et al. 1997; Singer et al. 1997; Donoghue et al. 1998)
have presented evidence of stimulus-related changes in
the correlation of ¢ring between small populations of
cortical cells. This might imply that correlations among
cortical neurons reveal a substantial capability of cortical
neural ensembles to code information synergisticallyö
that is, that the ensemble of neurons provides more
information than the simple sum of the contributions of
the individual cells. Another possibility is that correla-
tions actually limit, rather than improve, the information
capacity of the population (Gawne & Richmond 1993;
Zohary et al. 1994; Shadlen & Newsome 1998). A third
possibility is that correlations have no major e¡ect on the
e¤ciency of neural codes (Golledge et al. 1996; Amit 1997;
Rolls & Treves 1998). What is clearly needed, in order to
reconcile these viewpoints, is a rigorous quantitative

methodology for addressing the roles of both correlations
and rates in information encoding.

Information theory (Shannon 1948; Cover & Thomas
1991), which has found much use in recent years in the
analysis of recordings from single cells (Optican &
Richmond 1987; Rieke et al. 1996; Rolls & Treves 1998;
Kitazawa et al. 1998), provides the basis for such an
approach. Ideally, to divide the information into compo-
nents indicative of the information encoding mechanisms
involved, it would be desirable to take any experiment in
which population activity was recorded in response to a
clearly identi¢able stimulus that the cells participate in
encoding, and determine how many bits of information
were present in the ¢ring rates, how many in coincident
¢ring by pairs of neurons, etc. By considering the limit of
rapid information representation, in which the duration
of the window of measurement is of the order of the mean
inter-spike interval, it is possible to do just this. This short
time-scale limit is not only a convenient approach to a
complex problem, but it is also likely to be of direct rele-
vance to information processing by the brain, as there is
substantial evidence that sensory information is trans-
mitted by neuronal activity in very short periods of time.
Single unit recording studies have demonstrated that the
majority of information is often transmitted in windows
as short as 20^50ms (Werner & Mountcastle 1965; Oram
& Perrett 1992; Rolls & Tovëe 1994; Tovëe et al. 1993;
Heller et al. 1995; Macknik & Livingstone 1998). Event-
related potential studies of the human visual system
(Thorpe et al. 1996) provide further evidence that the
processing of information in a multiple-stage neural
system can be extremely rapid. Finally, if one wishes to
assess the information content of correlational assemblies
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which may last for only a few tens of milliseconds (Singer
et al. 1997), then appropriately short measurement
windows must be used.

The current work describes the use of information
theory to quantify the relative contributions of both ¢ring
rates and correlations between cells to the total informa-
tion conveyed.

We report an expansion of the expression for mutual
information to second order in time, show that the
second-order terms break down into those dependent on
rate and those dependent on correlation, and demon-
strate that this can form the basis of a procedure for
quantifying the information conveyed by simultaneously
recorded neuronal responses. We show that with pairs of
cells the approach works well for time windows several
hundred milliseconds long, the time range of validity
decreasing approximately inversely with population size.
The expansion for the information shows that in short
but physiological time-scales, ¢ring rates dominate
information encoding when cell assemblies of limited
size are considered, because correlations begin to
contribute only with subleading terms. We ¢nd that the
redundancy of coding is dependent on the speci¢c
combination of the correlation in the number of spikes
¢red in the time window, which in the limit of short
time windows measures the probability of coincident
¢ring and thus the extent of synchronization, and the
correlation among mean response pro¢les to di¡erent
stimuli. Furthermore, we observe that even stimulus-
independent correlations may in some circumstances
lead to synergistic coding.

2. METHODS

(a) Information carried by neuronal responses and
its short time-scale expansion

Consider a period of time beginning at t0, of (short) duration
t, in which a stimulus s is present. Let the neuronal population
response during this time be described by the vector n, the
number of spikes ¢red by each cell. Typically each component
will have a value of zero or one, and only rarely higher. Alter-
natively, we may describe the response by the ¢ring rate vector
r � n=t. In a typical cortical neurophysiology experiment we
might hope to have tens of such trials with the same stimulus
identi¢cation s. The stimuli considered are purely abstract: the
procedures detailed in this paper are applicable to a wide
variety of experimental paradigms. However, it may help to
conceptualize the stimulus as, for example, that object (of some
set) which is being viewed by the experimental subject; indeed,
data from such an experiment are examined later in this paper.
Consider the stimuli to be taken from a discrete set S with S
elements, each occurring with probability p(s). The probability
of events with response r is denoted as p(r), and the joint prob-
ability distribution as p(s,r).

Following Shannon (1948), we can write down the mutual infor-
mation provided by the responses about the whole set of stimuli as

I(t) �
X
s2S

X
r

p(s,r) log2
p(s,r)
p(s)p(r)

. (1)

This assumes that the true probabilities p(s,r) are available. In
practice, however, we have only a small to moderate number of
events from which to compute the frequency table, and as a

result a bias is introduced which must be corrected (Panzeri &
Treves 1996).

Now, the information can be approximated by a power series

I(t) � t It �
t 2

2
Itt � . . . , (2)

where It refers to the instantaneous information rate and Itt to the
second time derivative of the information, the instantaneous infor-
mation àcceleration'. (The zeroth order, time-independent term is
not included in equation (2) because it is, of course, zero, as no
information can be transmitted by the neurons in a time window of
null length.) For short time-scales, only the ¢rst- and second-order
terms survive: higher-order terms in the series become negligible.
The time derivatives of the information can be calculated by taking
advantage of the short time limit, as we shall explain.

(b) De¢nitions and measurement of correlations for
short time-scales

There are two kinds of correlations that in£uence the
information. These have been previously termed s̀ignal' and
`noise' correlations (Gawne & Richmond 1993). They can be
distinguished by separating the responses into `signal' (the
average response to each stimulus) and `noise' (the variability of
responses from the average to each stimulus). The correlations in
the response variability represent the tendency of the cells to ¢re
more (or less) than average when a particular event (e.g. a spike
from another neuron) is observed in the same time window. For
short time windows, this of course measures the extent of synchro-
nization of the cells. Note that we do not assume that the trial-by-
trial variability is just due to noise, and our analysis is indepen-
dent of the cause of this variability, which could arise from a
number of factors (Arieli et al. 1996).We name the correlations in
the variability as `noise correlations' only for consistency with
previous literature (Gawne & Richmond1993; Gawne et al. 1996).
In fact, our results reported below (equation (9)), precisely quan-
tify the contribution of correlations in the trial-by-trial variability
to the information carried by the neuronal population, and show
in which cases correlations in this variability contribute positively
to information transmission. One way to introduce the para-
meters 
ij(s) quantifying noise correlation in the short time limit
is in terms of the conditional ¢ring probabilities

p(ni(s) � 1jnj(s) � 1 ; s) � ri(s) t(1� 
ij(s))� O(t 2), (3)

where ri(s) is the mean response rate of cell i (among C cells in
total) to stimulus s over all the trials in which that stimulus was
present and O(t 2) means that the terms neglected in
equation (3) are second order in t. It has been assumed in the
above that the conditional probabilities (3) scale proportionally
to t; this is the only assumption underlying our time expansion.
It is a natural assumption, being violated only in the implausible
case of spikes locked to one another with in¢nite time precision,
but in any case it can be veri¢ed for any given data set.

For i 6� j, equation (3) gives us the probability of coincident
¢ring: cells i and j both ¢re spikes in the same time period; 
ij(s)
is the fraction of coincidences above (or below) that expected
from uncorrelated responses, normalized to the number of coinci-
dences in the uncorrelated case (which is ni(s)nj(s), the bar
denoting the average across trials belonging to stimulus s).

ij(s) (i 6� j) is thus given by the following expression:


ij(s) �
ni(s)nj(s)
(ni(s)nj(s))

ÿ 1, (4)
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and is named the `scaled cross-correlation density' (Aertsen et al.
1989). It can vary from ÿ1 to 1; negative 
ij(s) values indicate
anticorrelation, whereas positive 
ij(s) values indicate correla-
tion. This measure of correlation is used because it has a
number of advantages for short time windows over the better-
known Pearson correlation coe¤cient for this application as
described in Appendix A. (In brief, the s̀caled cross-correlation
measure' 
ij, unlike the Pearson measure, remains ¢nite for
short time windows, and in addition the mathematical deriva-
tion of our result is simpler and much more compact with this
measure. We note that the particular measure used for correla-
tions is ultimately a matter of mere notation, and it has, of
course, no e¡ect at all on the value of each of the information
components presented below, as discussed in Appendix A.)

For i � j, equation (3) instead gives the probability of
observing a spike emission by cell i, given that we have observed
a di¡erent spike from the same cell i during the same time
window. The s̀caled autocorrelation coe¤cient' must be
measured as


ii(s) �
(ni(s)

2 ÿ ni(s))
2

ni(s)

ÿ 1. (5)

Notice that in the numerator of the above equation, the sub-
traction of ni(s) is needed to quantify correctly the number of
occurrences of at least two spikes from the same cells; this was
not necessary when i and j represented di¡erent cells. (This may
be understood by observing that assuming independence
between the spikes of the same cell is equivalent to the assump-
tion that the cell ¢res according to a Poisson process. For such a
process the variance of the spike count is equal to the mean. The
subtraction of ni(s) precisely subtracts from the variance of the
spike count what is expected in the independent case.) Again,
this measure was used for compactness of the results. The
relation of this measure to alternative ones, such as the Fano
factor, is described in Appendix A. Because we are considering a
single short time window, note that these correlations are
observed over repeated trials with the same stimulus.

To maintain homogeneity with respect to the noise correla-
tion case, we chose to quantify the correlations in the signal, i.e.
the correlations �ij in the mean responses of the neurons across
the set of stimuli, as a signal scaled cross-correlation coe¤cient:

�ij �
hni(s)nj(s)is
hni(s)ishnj(s)is

ÿ 1 � hri(s)rj(s)ishri(s)ishrj(s)is
ÿ 1. (6)

The de¢nition is similar to that of scaled noise correlation; the
main di¡erence is that now the average is across stimuli:
h( . . . )is �

P
s p(s)( . . . ), not across trials. As before, �ij varies

between ÿ1 and1.

(c) Response probability quanti¢cation
If the ¢ring rates conditional upon the ¢ring of other neurons

are non-divergent, as assumed in equation (3), the t expansion
of response probabilities becomes essentially an expansion in the
total number of spikes emitted by the population in response to
a stimulus. The only responses with non-zero probabilities up to
order t k are the responses with up to k spikes from the popula-
tion; the only events with non-zero probability are therefore
those to second order in t with no more than two spikes emitted
in total:

p(0js) � 1ÿ t
XC
i�1

ri(s)�
t 2

2

XC
i�1

XC
j�1

ri(s)rj(s)(1� 
ij(s)),

p(eijs) � t ri(s)ÿ t 2ri(s)
XC
j�1

rj(s)(1� 
ij(s)) i � 1, . . . , C,

p(eiijs) �
t 2

2
r2i (s)(1� 
ii(s)) i � 1, . . . , C,

p(eijjs) � t 2ri(s)rj(s)(1� 
ij(s)) i, j � 1, . . . , C; i5j, (7)

where 0 is the zero response (no cells ¢re), ei indicates a single
spike ¢red by cell i, and eij indicates a pair of spikes ¢red by
cells i and j. The expression (7) for the probabilities can be
derived by requiring that the probabilities are normalized to
unity, that the conditional ¢ring probabilities are proportional
to t, as in equation (3), and by requiring, through straight-
forward algebraic equations, that the ¢ring rates and the scaled
auto- and cross-correlation coe¤cient take the values ri(s), 
ii(s)
and 
ij(s), respectively. The information derivatives are then
calculated in terms of the probabilities (equations (7)) as
follows. First, one inserts the probabilities (equations (7)) into
the sum over responses in equation (1). Then, for each term of
the sum over responses, one uses the power expansion of the
logarithm as a function of t:

log2 (1ÿ tx) � ÿ 1
ln2

X1
j�1

(tx� j
j

.

Finally, grouping together all the terms in the sum which have
the same power in t, and using equation (2), one obtains the
expressions for the information derivatives reported below. Note
that interactions among more than two cells do not a¡ect the
second-order probabilities (and thus will not a¡ect the informa-
tion up to second order).

(d) Bias calculation
The information rate It and each of the three components of

Itt (see equation (9) below) are a¡ected by a systematic error
when calculated from limited data samples. This is a problem
general to all nonlinear functions of probabilities, but it has
been noted to be of particular concern for Shannon information,
from which It and Itt derive (Panzeri & Treves 1996). Further-
more, the bias in the nth derivative of the information has a 1=t n

dependence, making treatment of the bias problem even more
crucial. The problem can largely be avoided by estimating the
bias by a standard error propagation procedure and subtracting
it from the calculated quantity. The procedure is detailed in
electronic Appendix B which is provided on the Royal Society
Web site.

(e) Integrate and ¢re simulation
Correlated spike trains were simulated using a method

similar to that used by Shadlen & Newsome (1998), to which we
refer for a full discussion of the advantages and limitations of
the model. In brief, each cell received 300 excitatory and 300
inhibitory inputs, each a Poisson process in itself, the (possibly
stimulus dependent) mean rate of which is constant across the
set of inputs for any speci¢c stimulus condition, and contributed
a ¢xed quantity to the membrane potential. (The decay time
constant of the membrane potential was 20ms for all the
simulations presented, apart from that in ¢gure 3(c,d ). To test
the e¡ects of changing the precision of synchrony, in
¢gure 3(c,d ) the membrane time constant was set to 1ms.) When
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the membrane potential exceeded a threshold, it was reset to a
baseline value. The degree of correlation between the ¢ring of
cells was set through the proportion of inputs shared between
cells (33% for ¢gure 2(b,c), ¢gure 3(a,b); 0% or 90% for
¢gure 2(d^ f ) and ¢gure 3(c,d )). The threshold was chosen as a

function of the membrane time constant, to guarantee the
conservation of the response dynamic range, i.e. the neurons
respond with approximately the same ¢ring rate as their inputs
over the range of cortical ¢ring frequencies. (The spiking
threshold was 14.5 times the magnitude of the quantal input
above the baseline for a time constant of 20ms, and it was 2.9
times the magnitude of the quantal input above the baseline for
a time constant of 1ms). Despite its simplicity, this `integrate
and ¢re' model with balanced excitation and inhibition can
account for several aspects of the ¢ring statistics observed in the
responses of neurons across large regions of the cerebral cortex
(Shadlen & Newsome 1998).

By ¢xing the proportion of shared connections, but varying
the mean ¢ring rate according to which stimulus is present, rate
coding in the presence of a ¢xed level of correlation can be
examined. The mean ¢ring rates chosen for each stimulus were
extracted from data recorded from real inferior temporal cortical
cells (see below). By holding the mean rate ¢xed (at the global
mean corresponding to the previous case) and instead varying
the proportion of shared connections according to the stimulus,
one can examine a pure correlational code, thus allowing a clari-
¢cation and test of the present information theoretical analysis.

3. RESULTS

(a) Information in neuronal ensemble responses in
short time periods

In su¤ciently short time windows, two spikes at most
are emitted from the population.Taking advantage of this,
the response probabilities can be obtained explicitly in
terms of pairwise correlations: triplet and higher-order
interactions do not contribute (see ½ 2). Here we report the
result of the insertion of the response probabilities
obtained in this limit into the Shannon information
formula (equation (1)): exact expressions quantifying the
impact of pairwise correlations on the information trans-
mitted by groups of spiking neurons. The information
depends upon both the noise correlations 
 and the signal
correlations �.

In the short time-scale limit, the ¢rst (It) and second
(Itt) information derivatives su¤ce to fully describe the
information kinetics.The instantaneous information rate is

It �
XC
i�1

�
ri(s) log2

ri(s)
hri(s 0)is0

�
s

. (8)

Note that the expression for It is just a generalization to
the population level (a simple sum) of the expression
previously derived for single cells (Bialek et al. 1991;
Skaggs et al. 1993). The expression for the instantaneous
information acceleration breaks up into three terms

Itt �
1
ln 2

XC
i�1

XC
j�1
hri(s)ishrj(s)is

�
�ij � (1� �ij) ln

�
1

1� �ij

��

�
XC
i�1

XC
j�1
�hri(s)rj(s)
ij(s)is� log2

�
1

1� �ij

�

�
XC
i�1

XC
j�1

�
ri(s)rj(s)(1� 
ij(s))

� log2

�
(1� 
ij(s))hri(s0)rj(s0)is0
hri(s0)rj(s0)(1� 
ij(s0))is0

��
s

. (9)
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Figure 1. Range of validity of the short time-window
approximation for the information. (a) The accuracy of the
approximation shown for two Poisson-simulated cells with
mean ¢ring rate distributions to a set often simulated stimuli
identical to those of a pair of inferior temporal cells from the
data set of Booth & Rolls (1998). The true information (solid
line) is compared with the ¢rst-(dashed) and second-(dot^
dashed) order series approximations. The vertical dotted line
indicates the mean interspike interval for the stimulus which
evokes the most spikes (providing a scale of comparison for
the range of validity). An extensive number of simulations
with integrate and ¢re neurons shows that this result, pictured
in the simple Poisson case, is relatively robust to neuronal
¢ring statistics. (b) As with (a), but for ¢ve instead of two
simulated Poisson cells. (c) The allowable ensemble size
while limiting the error due to the approximation to 5%;
extrapolation from the data set above, based on 1=C scaling.



The ¢rst of these terms is all that survives if there is no
noise correlation at all. Thus the rate component of the
information is given by the sum of It (which is always
greater than or equal to zero) and of the ¢rst term of Itt
(which is instead always less than or equal to zero). The
second term is non-zero if there is some correlation in the
variance to a given stimulus, even if it is independent of
which stimulus is present; this term thus represents the
contribution of stimulus-independent noise correlation to
the information. The third component of Itt represents the
contribution of stimulus-modulated noise correlation, as
it becomes non-zero only for stimulus-dependent correla-
tions.We refer to these last two terms of Itt together as the
correlational components of the information.

The result just described shows that the short time-
scale limit allows a rigorous quanti¢cation of the e¡ect of
correlations on the information conveyed by neuronal
ensembles. The price to pay is the limited temporal range
of applicability, as it formally requires that the mean
number of spikes in the considered time window be small.
What must now be addressed is the actual temporal
range of applicability of the approach. The range of

validity of the (order t 2) approximation will depend on
how well the information time dependence ¢ts a quad-
ratic approximation (e.g. for a quadratic function, the
Taylor expansion to the second order would of course be
exact for the entire t range). Because the assumption
about the number of spikes will be broken ¢rst by the
stimulus that gives the maximal response, a good scale
for comparison with the range of validity is the minimum
mean interspike interval to any stimulus. We studied the
range of validity of the approximation, in the case of cells
¢ring with Poisson statistics by direct calculation of the
information; and in the more general case of up to four
integrate and ¢re simulated neurons by a `brute-force'
calculation, using many trials of simulated data.
Figure 1(a) shows the accuracy of the approximation for a
pair of Poisson-simulated cells with mean-rate character-
istics of real inferior temporal (IT) cells (Booth & Rolls
1998); the range of validity in this case would appear to
be (being conservative), about six to eight times the
minimum mean interspike interval. The approximation is
better for smaller samples of cells. Scaling considerations
suggest that the range of applicability should shrink as
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Figure 2. By simulating a quintuplet of cells, we were able to examine situations in which di¡erent information components
were prominent. In each case shown, 100 trials of data were generated for each di¡erent stimulus. In the case of Poisson cells,
all information is carried in the mean ¢ring rates. This is shown in (a), in which the total information is compared with that
from the rates only (the contributions of It and the ¢rst term of Itt added together) and the additional information due to
stimulus-independent correlations and stimulus-dependent correlations. (b,c) The result of an integrate and ¢re simulation in
which common input is introduced by sharing of one-third of the connections for each pair of cells, giving the cross-correlogram
shown in (b). The total information (thick solid line) and components of the information are shown versus the width of the
measurement window in (c). The rate component is still dominant, but the stimulus-independent correlational component has a
non-negligible e¡ect. (d^f ) A situation in which correlational information dominates: with a ¢xed mean ¢ring rate, two of the
¢ve simulated cells (chosen randomly for that stimulus) increase their correlation by increasing the number of shared
connections while the other two remained randomly correlated. The e¡ect of this on cell spiking activity is shown in (d ): panel
(i) shows the fraction of shared connections, while panels (ii) and (iii) show the membrane potential and spike emission of the
simulated cells. (e) The cross-correlograms corresponding to the low and high correlation states. The result of this is seen in
( f ): information due to correlations, although modest in magnitude, in this demonstration dominates the total information, as
discussed in the text.



the inverse of the number of cells for larger populations.
This expectation is roughly con¢rmed by the results in
¢gure 1(b), where ¢ve Poisson cells (again with typical
cortical ¢ring rates) are analysed. Integrate and ¢re
simulations con¢rm that this estimate of the range of
validity is relatively robust to neuronal statistics and is
conserved across a wide range of response correlation
values. Figure 1(c) shows an estimate of the allowed
ensemble size versus the time window for cells with mean
rates to stimuli extracted from the cortical data of Booth
& Rolls (1998). We conclude that the analysis is pertinent
for time-scales relevant to neuronal coding for ensembles
of up to around 10^15 cells with ¢ring rates similar to
those in the inferior temporal cortex, and for even larger
ensembles of cells with lower ¢ring rates, such as medial
temporal lobe cells.

(b) Rate and correlation components of the
information

So what is the impact of the second-order terms on
the information conveyed by the ensemble of neurons?
Figure 2 provides an illustration of their e¡ect. In the
case of non-interacting cells with zero autocorrelation,

the information is carried entirely in the rate component
of the information. This was exempli¢ed by simulating a
quintuplet of cells, each of which ¢red spikes according
to a Poisson process (at any instant in time there is a
given probability of ¢ring which is constant in time
throughout the experimental trial), independently of
other cells, with a mean rate which was di¡erent for
each of ten stimuli. The mean rates of each of the ¢ve
cells to each stimulus were taken from real cells
described in Booth & Rolls (1998); these real cells were
the ones analysed as simultaneously recorded pairs later
in the paper, facilitating comparison with the real data
examined. The result is shown in ¢gure 2(a), which, like
the other graphs, shows separately the contributions of
the three terms to the total information. The last two of
these (the contributions of correlations) are negligible in
the example of ¢gure 2(a), because the spike trains were
by design uncorrelated.

By simulating spike trains with the integrate and ¢re
model, we were able to examine situations in which the
correlational components of the information were not
negligible. The ¢rst such case considered was that of a
quintuplet of neurons which had a large amount of
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Figure 3. Illustration of the e¡ect of changing population size (a), ¢ring rates (b), and precision of synchrony (c,d ). All symbols and
conventions are as in ¢gure 2. (a) The e¡ect of reducing the population size from ¢ve to two cells in the integrate and ¢re simulation
with 30% common inputs of ¢gure 2(b,c). The total information is signi¢cantly reduced. In (b) we reduced by a factor of three the
¢ring rates of the integrate and ¢re simulation with 30% common inputs of ¢gure 2(b,c). The total information is reduced, and also
the relative contribution of correlation becomes much less important at low rates. In (c,d ) we simulated a correlational assembly
with a constant ¢ring rate of 20Hz to all stimuli, and a percentage of shared connections of either 0% or 90% to di¡erent stimuli, as
in ¢gure 2(d^f ). The membrane time constant is set to 1ms. The cross-correlogram in the 90% shared connection state is plotted in
(c). The information, shown in (d ), is fully conveyed by the stimulus-dependent correlational component and, because of the
increased precision of synchrony, is higher than in the case of the 20ms membrane time constant (¢gure 2f ).



common input (one-third of their connections were
shared). These neurons ¢red spikes in response to a
balance of excitatory and inhibitory input (see ½ 2), with
a membrane decay time of 20ms leading to a small
amount of correlated ¢ring, as shown by the cross-
correlogram in ¢gure 2(b). Ten stimuli again induced
di¡erent mean ¢ring rate responses from the cells. The
correlation is not stimulus dependent, and therefore the
third component of Itt is still zero in this case. The second
component of Itt, representing the e¡ect of stimulus-
independent correlation, can, if required, again be broken
up into auto- (i � j) and cross-correlation (i 6� j) parts.
The elements corresponding to autocorrelation are always
positive for autocorrelations 
ii between 71 and 0 (as
observed for the IT cells), whereas for a given (i, j), the
cross-correlation component is positive when, for positive
noise correlation, the signal correlation is negative, i.e.
when the cells anti-covary in their stimulus response
pro¢les. In the case shown in ¢gure 2(c), this term is
positive, and leads to a modest increase in the total
information that can be transmitted.

To model a situation where stimulus-dependent corre-
lations conveyed information, we generated simulated
data using the integrate and ¢re model for another quin-
tuplet of cells which had a stimulus-dependent fraction of
common input. This might correspond to a situation
where cells transiently participate in di¡erent neuronal
assemblies, depending on stimulus conditions. There were
again ten stimuli, but this time the mean spike emission
rate to each stimulus was constant at ca. 20Hz, the global
mean ¢ring rate for the previous case. One of these
stimuli simply resulted in independent input to each of
the model cells, whereas each of the other nine stimuli
resulted in an increase (to 90%) in the amount of shared
input between one pair of cells (chosen at random from
the ensemble such that each stimulus resulted in a
di¡erent pair being correlated). The response of one such
pair to changes in the amount of common input is shown

in ¢gure 2(d ). Panel (i) shows the fraction of shared
connections as a function of time; panels (ii) and
(iii) show the resulting membrane potentials and spike
trains from the pair of neurons. During the high
correlation state, there was, on average, a seven times
higher probability of a coincidence in any 10ms period
than chance. This cross-correlation is also evident in the
cross-correlograms shown in ¢gure 2(e). The results are
given in ¢gure 2( f ): all terms but the third of Itt are
essentially zero, and information transmission, is in this
case, almost entirely due to stimulus-dependent correla-
tions. The total amount of information that could be
conveyed, even with this much shared input, was modest
in comparison to that conveyed by rates dependent on the
stimuli, at the same mean ¢ring rate. The total informa-
tion increased slightly if for the `high correlation' state the
spike trains were nearly perfectly correlated; if the `low
correlation' state corresponded not to chance, but to
actual anticorrelation, then it is possible that even more
information could be conveyed.

To illustrate the impact of the population size and of
the overall average ¢ring rate, we performed more
simulations, again using the spike trains with the
integrate and ¢re model with a time constant of 20ms
and 30% shared connections, as in ¢gure 2(b,c). In
¢gure 3(a) we tested the e¡ects of population size by
computing the information from pairs of cells instead of
from ¢ve cells, by extracting pairs from the set of ¢ve
cells and then averaging across pairs. The e¡ect of
reducing the size of the population from ¢ve to two cells
was to reduce the total information by a factor of about
two. It is, of course, expected that the amount of infor-
mation depends on the number of cells in the popula-
tion. It is also shown with this particular set of
generated spikes that the relative amount of information
in the di¡erent components is approximately similar. In
¢gure 3(b) we show the e¡ects of applying the methods
to cells with lower ¢ring rates. The lower ¢ring rates
were produced simply by dividing the rates by three
relative to those used in ¢gure 2(c). (This places the
¢ring rates of the cells in the same regime as that of
primate hippocampal pyramidal neurons in vivo, which
¢re at lower rates than cortical visual cells (Rolls et al.
1997a).) The information was computed from the
responses of the population of ¢ve simulated cells. The
e¡ect of dividing the overall ¢ring rate by three was to
reduce the information by approximately two. If only
the ¢rst derivative was important, we would expect the
total information to decrease linearly when decreasing
the rate. The sublinear decrease is mostly due to the rate
component of the second derivative, which is a negative
contribution, larger for higher rates and much smaller
for lower rates. Similarly, the correlational component of
the information is also much less important for lower
rates, as evident from our analysis.

To illustrate the e¡ects of precision of synchrony, we
produced spike trains by simulating a correlational
assembly with a constant ¢ring rate of 20Hz to all
stimuli, and a percentage of shared connections of either
0% or 90% to di¡erent stimuli. In order to increase the
precision of the synchrony with respect to ¢gure 2(d^f ),
we decreased the membrane time constant to the value
of 1ms. This gives, in the high correlation state, a very
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precise 1ms synchrony between the spike trains, as
shown by the cross-correlogram in ¢gure 3(c). The infor-
mation shown in ¢gure 3(d ) is fully conveyed by the
correlational component with no information in the
¢ring rates, correctly re£ecting the way in which the
spikes were generated. The actual information with the
1ms precision is higher by a factor of 1.5 with respect to
the 20ms membrane time constant (¢gure 2( f )). Thus
the precision of spike synchrony has an impact on the
correlational part of the information, as predicted by our
analysis.

(c) Application of the method to real neuronal data
To demonstrate that the technique is applicable to real

data, we applied the information component analysis to
three pairs of cortical cells recorded simultaneously from
the same electrode from the data set of Booth & Rolls
(1998). These data came from an experiment in which the
responses of neurons in the inferior temporal cortex of the
macaque monkey were recorded while one of ten di¡erent
objects was being viewed. The ¢ring rates of these
neurons were found by Booth & Rolls (1998) to convey
information about which object was present, regardless of
viewing angle. Four di¡erent views of each object were
each presented ¢ve times, resulting in a total of twenty

trials for each object. The median ¢ring rate to the best
stimulus of the cells used in our analysis was 44Hz. The
same data were used to estimate realistic ¢ring rates for
all the simulations described in this paper.

Each component of the information for the cells in this
data set was calculated for each pair of cells, and the stan-
dard error in the calculation of each information compo-
nent was obtained by error propagation from the variances
in the measurements of spike counts and coincidences over
the trials. The average information encoding character-
istics of the three pairs (which were qualitatively similar to
each other) are shown in ¢gure 4. In this example it is
clear that the rate component is prominent in the informa-
tion representation; however, the important point to gain
from this result is that the information expansion provides
a demonstrably practical method for analysing simulta-
neously recorded data with only a small number of experi-
mental trials. The values of each component and an
estimate of its error are available both for single small
ensembles, and for the àverage picture' obtained by
recording large numbers of such small neuronal ensembles.
This encourages us to think that it will be possible to
analyse simultaneously recorded data in a systematic and
rigorous quantitative manner. Of course, the populations
of neurons that actually act e¡ectively together are larger
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than can be studied using this, or any other presently
known procedure. However, it is reasonable to assume that
e¡ects present in such large ensembles will be to some
extent observable in the smaller ensembles that one can in
practice record from and analyse.

DISCUSSION

(a) Redundancy versus synergy
A crucial point in understanding the representation of

external stimuli by the activity of a population of neurons, is
how the information conveyed by individual cells combines
together. If many cells in the sample carry similar informa-
tion, then the code is redundant, and there is not much more
information in the population than that present in single
cells. Another regime is where the information from
di¡erent cells is independent, in which case the information
increases linearly with the number of cells in the population.
Yet another regime is one in which some information is
available only by looking simultaneously at the responses of
di¡erent neurons, with, for example, some of the informa-
tion being available only from the relative timing of ¢ring of
di¡erent cells. This code is said to be synergistic, and more
information is available in the population than one would
obtain by the sum of the information obtained from each
neuron alone. In mathematical terms, the redundancy of a
code can be de¢ned (and measured in bits) as the amount of
information that would be obtained by adding the informa-
tion from every cell as if each was independent minus that
obtained by considering the whole neuronal ensemble
(Rieke et al. 1996). For synergistic coding, the value of this
Shannon redundancy is, of course, negative.

Equation (9) shows that overall correlations in the
distribution of mean responses alone can only lead to
redundancy, because all (i, j) contributions to the ¢rst
term of Itt are negative, except that they are zero when
there is no overall `signal' correlation in the mean
response pro¢les (i.e. �ij � 0). To have synergistic coding
of information one needs correlations in the variability of
the responses (to a given stimulus), i.e. non-zero 

parameters. Even when such `noise' correlations are
independent of the stimuli, however, it is possible to have
synergy. This can be demonstrated by considering the
sign of the Shannon redundancy, obtained from
equation (1) by subtracting the information conveyed by
the population from the sum of that carried by each
single cell. This shows four basic regimes of operation,
illustrated in the two-cell example of ¢gure 5. If the cells
anti-covary in their response pro¢les to stimuli, they
must have a positive noise correlation, above the
boundary value depicted in ¢gure 5(a), to obtain synergy;
or if the cells do have positive signal correlation, then
coincidences must be actively suppressed by a negative
noise correlation stronger than the corresponding
boundary value. When the signal and noise correlations
have the same sign, one always obtains redundancy in the
short time-scale limit. Clearly, already with pairs of cell,
the interplay between correlation in the noise and
correlation in the signal introduces a potential for both
redundancy and synergy.

A simple example of the interplay between signal and
noise correlation in a pair of cells is graphically depicted
in ¢gure 5(b ). In this example there are three stimuli, A,

B and C, which occur with equal probability. The ¢rst
cell emits a di¡erent mean number of spikes to each
stimulus: one to A, two to B, and three to C. Let us
consider cases where the second cell either ¢res the same
mean number of spikes to each stimulus (full correlation),
or alternatively has the mean responses to A and C
exchanged (anticorrelation with �12 � ÿ1=6). On any
given occasion, noise adds zero or �1 spikes, with equal
(one-third) probability, to the output of the cell. It is easy
to check that the information carried by each cell alone is
(2=3) log2 3ÿ (4=9) bits, which is less than half the
H � log2 3 maximum information (entropy) available in
the stimulus set.

Figure 5(b) illustrates the four di¡erent situations for
the second cell, depending on the way in which the mean
(signal) and variance (noise) of the number of spikes it
¢res are related to those of the ¢rst cell. When the signal
and noise are both correlated (or both anticorrelated), the
joint probabilities of the numbers of spikes ¢red by each
cell tend to bunch up along the diagonal, so that the total
information from both cells is less than the sum of that
obtained from each cell on its own. If, however, with
correlated signal the noise is anticorrelated or if with
correlated noise, the signal is anticorrelated, then the
joint probabilities are more spread out. This means that
the presented stimulus can be clearly identi¢ed on the
basis of the joint response observed. If this spread is
su¤cient, it is possible to obtain synergy: the information
calculated from the joint probability matrix exceeds the
sum of that obtained for each cell individually. In this
example, with the signal having �12 � ÿ1=6(anti-
correlation), if the noise was uncorrelated between the
cells, then the redundancy can be easily seen to be 0.04
bits; it is only when the noise correlation is increased
above 
12 � 0:10 that the coding is synergistic.
Examination of equation (9) and ¢gure 5(c) reveals the

total amount of redundancy (or synergy) to be much
more sensitive to noise correlation when the signal corre-
lation is high, for example, the noise correlation leads to
large redundancy if the cells are tuned to the same
stimulus. If the signal correlation is small, the redun-
dancy is close to zero, no matter how correlated the noise.
This explains why the impact of noise correlation on the
performance of pools of neurons has been emphasized in
experiments using simple one-dimensional discrimination
tasks (in which neurons from a local pool have been
found to be tuned to the same stimulus (Zohary et al.
1994; Parker & Newsome 1998)), while noise correlation
has been described as less important for groups of
neurons coding for complex stimuli (Gawne & Richmond
1993; Gawne et al. 1996), which tend to use a more distrib-
uted encoding. This study therefore shows rigorously that
correlations do not necessarily invoke redundancy, and
that it is not possible in general to estimate the è¡ective'
number of neurons participating in encoding by simply
measuring the noise correlation, as done by Zohary et al.
(1994). Further, because the signal correlation was
reported to decrease towards zero when increasing the
complexity of the stimulus set used to test the neurons
(Gawne et al. 1996; Rolls et al. 1997b), it predicts that noise
correlation might have only a small impact in the
encoding of large sets of natural stimuli, at least as far as
stimulus-independent noise correlation is concerned. The
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e¡ect of small stimulus-dependent correlations in the
noise is considered below, and it should not be neglected.

The possibility of synergy with constant correlations
has been raised previously (Oram et al. 1998) as a
phenomenological observation; the information expan-
sion we have introduced places this phenomenon on a
solid mathematical footing, and delineates, for short time
windows, the exact boundaries of the regions of synergy
and redundancy. The discussion by Oram et al. (1998)
points out that correlations might lead to synergy when
neurons are tuned to di¡erent stimuli, but it is not able to
bridge between di¡erent encoding situations and predict
the exact amounts of redundancy or synergy that occur,
as our analysis does. The analysis of synergy presented
here, unlike that of Oram et al. (1998), generalizes to the
case of stimulus-modulated correlations: it is enough to
specify the stimulus dependence of correlations and take
into account also the third term of Itt.

(b) A null hypothesis for the role of correlations in
the cerebral cortex

How might typical correlations among cells in a popu-
lation scale up with the size of the population? Clearly,
this is a question for experiments to address, in fact a
most crucial question for those investigating correlations
in neural activity. Such experiments need to be well
designed, accurate and systematic. It is easy to see, from
the analysis above, that with large populations even small
correlations could produce extreme e¡ects, resulting in
either large redundancy or (perhaps less often) very
substantial synergy. This is because, while with C cells
there are C ¢rst-order terms in the information, there are
obviously C2 second-order terms, C3 third-order ones
(which depend also on three-way correlations), and so on.
Depending on tiny details of the correlational structure,
successive terms can a¡ect transmitted information in
both directions.Within such broad a realm of possibilities,
it is then of interest to try to formulate a sort of null
hypothesis, that might provide at least a reference point
against which to contrast any more structured candidate
theory. One example is the scaling behaviour we might
expect if the correlations were not playing any special
role at all in the system or area being analysed. In this
`null' hypothesis, the parameters �ij would be expected to
be small, that is to deviate from zero (no correlations)
only in so far as the set of stimuli used is limited (Gawne
& Richmond 1993; Rolls et al. 1997b); similarly the
stimulus-dependent noise correlation 
ij(s) would be
small. The scaling behaviour corresponding to this null
hypothesis can be examined by further expanding Itt as a
series in these new small parameters: at times of the order
of the interspike interval, second-order terms of order
ÿC2h(�)2i (redundant) and �C2h(
)2i (synergistic) are
introduced (the angular brackets indicating the average
value). If we have a large enough population of cells, and
h(�)2i and h(
)2i are not su¤ciently small to counteract
the additional C factor, these `random' redundancy and
synergy contributions will be substantial. Obviously, in
this situation our expansion would start to progressively
fail in quantifying the information, because higher-order
terms in the t expansion become more and more
important in this case. But this clearly shows that a
su¤ciently large population of cells, which has not been

designed to code stimuli in any particular cooperative
manner, has the potential to provide large e¡ects of
redundancy or synergy, arising simply from random
correlations among the ¢ring of the di¡erent cells. This
reinforces the need for systematic study of the magnitude
and scaling of correlations in the cerebral cortex.

(c) Correlational assemblies and mutual
information

If cells participate in context-dependent correlational
assemblies (Singer et al. 1997), a signi¢cant amount of
information should be found in the third component of
Itt, relative to the total information, when analysing data
obtained from the appropriate experiments. The
challenge for the establishment of correlational theories of
neural coding has thus been laid down: to demonstrate
quantitatively how substantial a proportion of the
information about external correlates is provided by
correlations between cells, given the large amount of
information that has been shown in some neural systems
to be coded by rate (Rolls & Treves 1998). The second-
order series expansion we have described allows precisely
this to be achieved for small ensembles of cellsöfor a
time window of 20ms, an ensemble of about 10^15 cells
which ¢red at a peak mean rate to a stimulus of around
50Hz (e.g. IT cells) could be analysed; with the same
time window, 25^30 cells ¢ring at a lower peak mean
rate of around 20Hz (such as neurons from the medial
temporal lobe) could be studied. Beyond this population
size the information expansion can still be of use in
picking up the correlational variables conveying most of
the information in small subpopulations, and eliminating
their relevant variables. Reduction of the response space
of a large population of cells to a treatable size thus may
be possible without losing salient features.
In order to test hypotheses about the role of correla-

tions in solving the binding problem (Von der Malsburg
1995; Gray et al. 1992; Singer et al. 1997), as opposed to
other solutions (Treisman & Gelade 1980; Treisman
1996), and about information coding in general (Vaadia
et al. 1995; deCharms & Merzenich 1996), careful quanti-
tative experimental studies of the correlations prevailing
in the neural activity of di¡erent parts of the brain are
needed. Data analyses based on the time-expansion
approach then have the potential to elucidate the role of
correlations in the encoding of information by cortical
neurons.
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APPENDIX A. CORRELATION MEASURES

The numerical value of the information calculated is
independent of the correlation measure used, and we
show here how to express the results using the Pearson
correlation coe¤cients and Fano factors instead of scaled
cross-correlation coe¤cients. In the text, we chose to use
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the scaled cross-correlation measure of equation (3)
because it produces a more compact mathematical formu-
lation of what is addressed in this paper, and has useful
scaling properties as the time window becomes small.

A widespread measure for cross-correlation is the
Pearson correlation coe¤cient �ij(s), which normalizes
the number of coincidences above independence to the
standard deviation of the number of coincidences
expected if the cells were independent. The normalization
used by the Pearson correlation coe¤cient quanti¢es the
strength of correlations between neurons in a rate-
independent way. However, it should be noted that the
Pearson noise-correlation measure approaches zero at
short time windows:

�ij(s) �
ni(s)nj(s)ÿ ni(s)nj(s)

�ni(s)�nj(s)

� t 
ij(s)
p
(ri(s)rj(s)),

where �ni(s) is the standard deviation of the count of spikes
emitted by cell i in response to stimulus s.

Under assumption (3), 
ij(s) remains ¢nite as t! 0;
thus by using this measure we can keep the t expansion of
the information explicit. This greatly increases the
amount of insight obtained from the series expansion.

Similarly, an alternative to scaled autocorrelation
density 
ii(s) for the measure of autocorrelations is the so
called Fano factor F, that is the variance of the spike
count divided by its mean (Rieke et al. 1996). This
measure is used in neurophysiology because for the
renewal process, often used as a stochastic model of
neuronal ¢ring, the variance is proportional to the mean.
(Fano factors lower than unity indicate that the process is
more regular than a Poisson process). F grows linearly
with t for short times: F � 1� t ri(s)
ii(s). Again, we
prefer 
ii(s) to the Fano factor in the information expan-
sion because F ÿ 1 approaches zero for short times.

To express the information derivatives in terms of Pearson
correlation coe¤cients and Fano factor, it is enough to make
the following simple substitutions in equation (9):


ij(s)!
�ij(s)

t
p
(ri(s)rj(s))

,


ii(s)!
F ÿ 1
t ri(s)

.

We note that the s̀caled cross-correlation measure' 
ij is
sensitive to the mean ¢ring rate, as the strength of neuronal
interactions might be overemphasized at low rate (Aertsen
et al. 1989): it cannot be taken to be a linear measure of
interaction strength. However, the value of the information
transmitted by the the number of spikes simultaneously
¢red by each cell, and of each particular component,
depends on the response probabilities, and not on the parti-
cular way chosen to quantify the correlations. Therefore,
the particular measure used for correlations is for this
application ultimately a matter of mere notation.
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Rolls, E. T., Treves, A. & Tovëe, M. J. 1997b The represent-
ational capacity of the distributed encoding of information
provided by populations of neurons in primate temporal
visual cortex. Exp. Brain Res. 114, 149^162.

Shadlen, M. N. & Newsome, W. T. 1998 The variable discharge
of cortical neurons: implications for connectivity, computa-
tion and coding. J. Neurosci. 18, 3870^3896.

Shannon, C. E. 1948 A mathematical theory of communication.
AT&TBell Lab.Tech. J. 27, 379^423.

Singer, W., Engel, A. K., Kreiter, A. K., Munk, M. H. J.,
Neuenschwander, S. & Roelfsema, P. 1997 Neuronal assem-
blies: necessity, signature and detectability.Trends Cogn. Sci. 1,
252^261.

Skaggs, W. E., McNaughton, B. L., Gothard, K. & Markus, E.
1993 An information theoretic approach to deciphering the
hippocampal code. In Advances in neural information processing

systems, vol. 5 (ed. S. Hanson, J. Cowan & C. Giles),
pp. 1030^1037. San Mateo: Morgan Kaufmann.

Thorpe, S., Fize, D. & Marlot, C. 1996 Speed of processing in
the human visual system. Nature 381, 520^522.
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